
IJAICT Volume 3, Issue 3, March 2016
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.05.07 Published on 05 (3) 2016

Corresponding Author: Mr. N. Rajkumar, SVS College of Engineering, Coimbatore, Tamilnadu, India. 452

FAULT PREDICTION IN OBJECT ORIENTED SYSTEMS USING
MALICIOUS CODE DETECTION

 Mr. N. Rajkumar
Assistant professor,

Department of computer science,
SVS College of Engineering,

Coimbatore, Tamilnadu, India

Ms. C. Viji
Assistant professor,

Department of computer science,
SVS College of Engineering,

Coimbatore, Tamilnadu, India

Dr. S. Duraisamy
Professor & Head,

Department of Computer Applications,
Sri Krishna College of Engg & Tech,

Coimbatore, Tamilnadu, India

Abstract— There are many classification algorithms were
employed successfully for the detection of unknown malicious code.
Most of these studies extracted features based on byte n-gram
patterns in order to represent the inspected files. In this study were
present the inspected files using OpCode n-gram patterns which are
extracted from the files after disassembly. The OpCode n-gram
patterns are used as features for the classification process. The
classification process main goal is to detect unknown malware
within a set of suspected files which will later be included in
antivirus software as signatures. A rigorous evaluation was
performed using a test collection comprising of more than 30,000
files, in which various settings of OpCode n- gram patterns of
various size representations and eight types of classifiers were
evaluated. A typical problem of this domain is the imbalance
problem in which the distribution of the classes in real life varies.
We investigated the imbalance problem, referring to several real-
life scenarios in which malicious files are expected to be about 10%
of the total inspected files. Lastly, we present a chronological
evaluation in which the frequent need for updating the training set
was evaluated. Evaluation results indicate that the evaluated
methodology achieves a level of accuracy higher than 96% (with
TPR above 0.95 and FPR approximately 0.1), which slightly
improves the results in previous byte n-gram representation.

Keywords— N-Grampattern, Opcode, Code Emulation, Pattern
Based Scanning.

I. INTRODUCTION

Modern computer and communication infrastructures are
highly susceptible to various types of attacks. A common
method of launching these attacks is by means of malicious
software (malware) such as worms, viruses, and Trojan horses,
which, when spread, can cause severe damage to private users,
commercial companies and governments. The recent growth
in high-speed Internet connections enable malware to
propagate and infect hosts very quickly, therefore it is
essential to detect and eliminate new (unknown) malware in a
prompt manner [1].

Anti-virus vendors are facing huge quantities (thousands) of
suspicious files every day [2]. These files are collected from
various sources including dedicated honey pots, third party
providers and files reported by customers either automatically

or explicitly. The large amount of files makes efficient and
effective inspection of files particularly challenging. Our main
goal in this study is to be able to filter out unknown malicious
files from the files arriving to an anti-virus vendor every day.
For that, we investigate the approach of representing malicious
files by OpCode expressions as features in the classification
task.

Several analysis techniques for detecting malware, which
commonly distinguished between dynamic and static, have
been proposed. In dynamic analysis (also known as behavioral
analysis) the detection of malware consists of information that
is collected from the operating system at runtime (i.e., during
the execution of the program) such as system calls, network
access and files and memory modifications. This approach has
several disadvantages [3]. First, it is difficult to simulate the
appropriate conditions in which the malicious functions of the
program, such as the vulnerable application that the malware
exploits, will be activated. Secondly, it is not clear what is the
required period of time needed to observe the appearance of
the malicious activity for each malware [4].

In static analysis, information about the program or its
expected behavior consists of explicit and implicit
observations in its binary/source code. The main advantage of
static analysis is that it is able to detect a file without actually
executing it and thereby providing rapid classification.

Static analysis solutions are primarily implemented using the
signature-based method which relies on the identification of
unique strings in the binary code. While being very precise,
signature-based methods are useless against unknown
malicious code .Thus, generalization of the detection methods
is crucial in order to be able to detect unknown malware
before its execution. Recently, classification algorithms were
employed to automate and extend the idea of heuristic-based
methods. In these methods the binary code of a file is
represented, for example, using byte sequence (i.e., byte n-
grams), and classifiers are used to learn patterns in the code in
order to classify new (unknown) files as malicious or benign.
Recent studies, which we survey in the next section, have
shown that by using byte n-grams to represent the binary file

© 2016 IJAICT (www.ijaict.com)

Corresponding Author: Mr. N. Rajkumar, SVS College of Engineering, Coimbatore, Tamilnadu, India. 453

features, classifiers with very accurate classification results
can be trained, yet there still remains room for improvement.

Another aspect in the maintenance of such a framework is the
importance of updating the training set with new known
malicious files. This is intuitively important, because the
purpose of malicious files changes over time and accordingly
the patterns within the code. Moreover, these malicious files
are written in varying frameworks which result in differing
patterns. However, it is not clear to what extent it is essential
to retrain the classifier with the new files. For this purpose we
designed a chronological experiment, based on a dataset
including files from the years 2000 to 2007, and trained each
time on files until year k and tested on the following years [5].

II. EXISTING SYSTEM

There are many different technologies available to detect
viruses most of which rely on the internal structure (rather
than the behavior) of the virus. Although the behavior of each
of the permutations of a metamorphic virus is the same, the
structure is different which means they can become difficult to
detect depending on the amount of variation [6]. There are
some detection methods which detect suspicious ability or
behavior within a program, such as heuristic analysis; however
these methods are rarely used as a sole means of virus
protection as they are normally prone to false-positives. The
following subsections will discuss various existing methods

2.1 Code Emulation
Code emulation was briefly mentioned when discussing
encrypted and polymorphic viruses as a possible means of
retrieving the unencrypted form of the virus body. Using code
emulation can be an effective tool when detecting viruses,
since it involves emulating software on a virtual machine
rather than a real processor. Because the virus is in a
controlled environment, the system emulating the virus will
not run any risk of harmful side-effects of the virus [7].

2.2 Pattern based scanning
One of the most common approaches to detecting viruses is
called string or signature scanning. At a high level, signature
scanning involves a set of signatures, or a string of bytes
which can contain wild cards, which are found in viruses but
not found in non-malicious code. These signatures often
contain non-contiguous code, using wild cards where
differences lie. These wild cards allow the scanner to detect if
virus code is padded with other junk code [8]. This kind of
detection requires research on known viruses, and patterns
within each virus need to be studied so that these signatures
can be found [9].

Although signature scanning works well on most viruses, a
metamorphic virus could potentially create enough variation
within the application making it nearly impossible to create a
reliable signature [10].

III. PROPOSED SYSTEM

The approach which is proposed in this paper will be focused
on the detection of unknown malware based on its binary code
content. The authors of were the first to introduce the idea of
applying Machine Learning (ML) methods for the detection of
different malwares based on their respective binary codes.
Three different feature extraction (FE) approaches were
employed: features extracted from the Portable Executable
(PE) section, meaningful plain-text strings that are encoded in
programs files, and byte sequence features [11].

Detecting Unknown Malware using Byte N-Grams Patterns
Over the past decade, several studies have focused on the
detection of unknown malware based on its binary code
content. The authors of [16] were the first to introduce the idea
of applying Machine Learning (ML) methods for the detection
of different malwares based on their respective binary codes.
Three different feature extraction (FE) approaches were
employed:

Features extracted from the Portable Executable (PE) section,
meaningful plain-text strings that are encoded in programs
files, and byte sequence features [12].

Representing Executables using OpCodes [13] An OpCode
(short for operational code) is the portion of a machine
language instruction that specifies the operation to be
performed. A complete machine language instruction contains
an OpCode and, optionally, the specification of one or more
operands. The operations of an OpCode may include
arithmetic, data manipulation, logical operations, and program
control.

The OpCodes, being the building blocks of machine language,
have been used for statically analyzing application behavior
and detecting malware [14]. addressed the tracking of malware
evolution based on OpCode sequences and permutations. Data
mining methods (Logistic Regression, Artificial Neural
Networks and Decision Trees) are used in to automatically
identify critical instruction sequences that can distinguish
between malicious and benign programs. The evaluation
showed a high accuracy level of 98.4%. Bilar examines the
difference of statistical OpCode frequency distribution in
malicious and non-malicious code. A total of 67 malware
executables were compared with the aggregate statistics of 20
non-malicious samples. The results show that malicious soft-

© 2016 IJAICT (www.ijaict.com)

IJAICT Volume 3, Issue 3, March 2016
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.05.07 Published on 05 (3) 2016

Corresponding Author: Mr. N. Rajkumar, SVS College of Engineering, Coimbatore, Tamilnadu, India. 454

ware OpCode distributions differ significantly from non-
malicious software and suggest that the method can be used to
detect malicious code. The approach in presents a single case
in our methodology; in this paper we test several OpCode n-
gram sizes while Bilar used only 1-gram. Based on our
experiments, using OpCode sequences improves the detection
performance significantly. Santos et al. Used the OpCode n-
grams (of size n=1, 2) representation to ascribe malware
instances to their families by measuring the similarity between
files. This is, however, different from our goal in which we
attempt to classify unknown suspicious files as malicious or
benign in order to detect new malware [15].

Our approach also stems from the idea that there are families
of malware such that two members of the same family share a
common “engine.” Moreover, there are malware generation
utilities which use a common engine to create new malware
instances; this engine may even be used to polymorph the
threat as it propagates. When searching for such common
engines among known malware, one must be aware that
malware designers will attempt to hide such engines using a
broad range of techniques. For example, these common
engines may be located in varying locations inside the
executables, and thus may be mapped to different addresses in
memory or even perturbed slightly. To overcome such
practices, we suggest disregarding any parameters of the
OpCodes. We believe that disregarding the parameters would
provide a more general representation of the files, which is
expected to be more effective for purposes of classification
into benign and malicious files.

3.1 First Method. Dataset Creation
We created a dataset of malicious and benign executables for
the Windows operating system, the system most commonly
used and attacked today. This malicious and benign file
collection was previously used in. We acquired 7,688
malicious files from the VX Heaven website. To identify the
files, we used the Kaspersky antivirus. Benign files, including
executable and DLL (Dynamic Linked Library) files, were
gathered from machines running the Windows XP operating
system on our campus.

The benign set contained 22,735 files. The Kaspersky anti-
virus program was used to verify that these files did not
contain any malicious code.

Some of the files in our collection were either compressed or
packed. These files could not be disassembled by disassembler
software and therefore, after converting the files into OpCode
representation we ended up with 5,677 malicious and 20,416
benign files (total of 26,093 files).

Code obfuscation is a prominent technique used by hackers in
order to avoid detection by security mechanisms (e.g., anti-
viruses and intrusion detection systems).These techniques are
also applied on benign software for copyrights protection
purposes. Packing and compressing files can be achieved by
using off-the-shelf packers such as Armadillo, UPX and
Themida. In such cases, static analysis methods might fail to
correctly classify a packed malware. Several solutions to the
challenge of packed code were suggested (e.g., Ether,
McBoost, PolyUnpack). These methods were proposed for
automatic unpacking of packed files by applying either static
or dynamic analysis. Evaluation performed in these studies
showed that unpacking files before being classified increase
the classification accuracy. Our proposed method can use such
an approach in order to overcome packed files. In addition, we
would like to point out that classifying benign files is also
useful and can reduce the load of inspecting suspicious (or
unknown) files. Also, the large number of malware files in our
dataset that could be dissembled indicates that in order to
appear benign and to pass security mechanisms (that are
configured to block content that is encrypted\obfuscated and
cannot be inspected), these techniques are not always used by
hackers.

3.2 Second Method. Data Preparation and Feature
Selection

To classify the files we had to convert them into a vectorial
representation. We had two representations, the known one,
often called byte n-grams, which consists of byte sequences of
characters extracted from the binary code, and the second
OpCode n-grams represented by sequences of OpCodes.
Using disassembler software, we extracted a sequence of
OpCodes from each file representing execution flow of
machineextracted from the binary code, and the second
OpCode n-grams represented by sequences of OpCodes.
Using disassembler software, we extracted a sequence of
OpCodes from each file representing execution flow of
machine operations. Subsequently, several OpCode n-gram
lengths were considered where each n-gram was composed of
n sequential OpCodes. This process is presented in Figure 1.

The process of streamlining an executable starts with
disassembling it. The disassembly process consists of
translating the machine code instructions stored in the
executable to a more human-readable language, namely,
Assembly language. The next and final step in streamlining
the executable is achieved by extracting the sequence of
OpCodes generated during the disassembly process. The
extracting of sequences is in the same logical order in which
the OpCodes appear in the executable, disregarding the extra
information available (e.g., memory location, registers,
etc.)The size of vocabularies (number of distinct n-grams)

© 2016 IJAICT (www.ijaict.com)

IJAICT Volume 3, Issue 3, March 2016
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.05.07 Published on 05 (3) 2016

Corresponding Author: Mr. N. Rajkumar, SVS College of Engineering, Coimbatore, Tamilnadu, India. 455

extracted for the OpCode n-grams representation were of 515,
39,011, 443,730, 1,769,641, 5,033,722 and 11,948,491, for 1-
gram, 2-gram, 3-gram, 4-gram, 5-gram and 6-gram,
respectively.

Fig 1 : File processing flow diagram

Later, the normalized term frequency (TF) and TF inverse
document frequency (TFIDF) representations were calculated
for each OpCode n-grams patterns in each file. The TF and
TFIDF are well known measures in the text categorization
field. In our domain, each n-gram is analogous to a word (or a
term) in a text document. The normalized TF is calculated by
dividing the frequency of the term in the document by the
frequency of the most frequent term in a document. The
TFIDF combines the frequency of a term in the document
(TF) and its frequency in the whole document collection,
denoted by document frequency (DF). The term’s
(normalized) TF value is multiplied by the IDF = log (N/DF),
where N is the number of documents in the entire file
collection and DF is the number of files in which it appears.
Input Design

The first step in system design is to design the input and
output within predefined guidelines. In input design, user
originated inputs are converted into computer based format. In
output design, the emphasis is on producing the hard copy of
the information requested of displaying the output on CRT
screen in a predefined format.

Inaccurate input data are the most common causes of errors in
data processing. Project message and appropriate sections can
control errors committed by data entry operators. The
following features have been incorporated into the input
design of the proposed system.

3.2.1 Easy data input
Data entry screens have been designed in a manner much
similar to old systems. Each form has controls for insertion,

updating and exit. Appropriate messages are provided in the
message area, which prompts the user in entering the right
data. Erroneous data inputs are checked while user inputs.

3.2.2 Use Friendliness
User is never left in a state of confusion as to what is
happening; instead appropriate error and acknowledgement
messages are sent. Error capturing is used to indicate the error
codes and specific error messages.

3.2.3 Consistent Format
A fixed format is adopted for, displaying the title and
messages. Every screen has buttons, which displays the
operation that can be performed after data entry. They are
normally done at the touch of a key or mouse.

3.2.4 Interactive dialogue
The system engages the user in an interactive dialogue. The
system is able to extract missing or omitted information from
the user by directing the user through appropriate messages,
which are displayed.

Input design is the process of converting user oriented inputs
to computer based format. It also includes determining the
record media, method of input, speed of capture, and entry
into the system.
Consideration can be given to

a) Type of input
b) Flexibility of format
c) Speed
d) Accuracy
e) Verification methods
f) Ease of correction
g) Need for specialized documentation
h) Storage and handling requirements
i) Automatic features
j) Hard copy requirements Security
k) Environments of data capture
l) Portability
m) Compatibility with other system
n) Cost etc.

Keyboard may be used as in input media. The data are
displayed on cathode ray tube screen for verification.
Inaccurate input data are the most common cause of errors in
data processing. Errors entered by the user can be controlled
by input design.

3.2.5 Output Design
During the output design phase the necessary outputs are
planned and designed based on user the objective of the
reports is to present the data in the way that the management
can present the data quickly and clearly. Each and every page

IJAICT Volume 3, Issue 3, March 2016

© 2016 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.05.07 Published on 05 (3) 2016

© 2016 IJAICT (www.ijaict.com)

Corresponding Author: Mr. N. Rajkumar, SVS College of Engineering, Coimbatore, Tamilnadu, India. 456

is designed in such a way they can be taken printouts with
required information. This information helps the user to
provide a neat and clear presentation about the student
information.
Whether the output is formatted report or a simple listing of
the contents of a file, a computer process will produce the
output.

 A Document
 A Message
 Retrieval from a data store
 Transmission from a process or system activity
 Directly from an output sources

The Output will be object detection with separate part
detection.

IV. CONCLUSION

In this work we define a new malicious code detection
algorithm. That will reduce the unknown code in the
developed program that will improve the quality of
software, improves reusability and easy debugging. In
this work the information are extracted into opcode n-
gram representation that will help to identify the
unknown code. The output of this file helps to predict
the fault in the object oriented systems.

REFERENCES
[1] Amos. Dange, Prof. Dr. S. D. Joshi, “Fault Prediction in Object Oriented

System Using the Coupling and Cohesion of Classes”, IJCSMS
International Journal of Computer Science and Management Studies,
Vol.11, Issue 02, pp. 48-51, Aug 2011.

[2] Andrian Marcus, Denys Poshyvany k,” Using the Conceptual Cohesion
of Classes for Fault Prediction inan Object-Oriented Systems,”IEEE
Transactionson Software Engineering, VOL.34, NO.2, pp 287-300,
march /april2008.

[3] Arisholm.E., Briand,L. C., and Foyen.A, "Dynamic coupling
measurement for OO software",IEEETSE,vol.30,no.8,pp. 491-506,2004

[4] Bansiya,J.and Davis,C. G., "A hierarchical model for object-
Orienteddesign quality assessment",IEEETSE vol.28,no.1 ,pp.4-
17.,2002

[5] Briand.l, Devanbu.p and Mello.w,”An investigation into coupling
measures for C++,” proceedings of ICSE, 1997.

[6] Briand, S.Morasca, and V.R.Basili, “Property-Based Software
Engineering Measurements,” IEEETrans.SoftwareEng., vol.22, no.1,
pp.68-85, Jan.1996.

[7] Briand,L.C., Wüst,J.,Daly,J.W., and Porter, V.D ,"Exploring the
relationship between design measures and software quality in object-
oriented systems", Journal of System and Software,vol.51,no.3,pp.245-
273.,2000.

[8] Chidamber, S.R. and Kemerer,C.F., "A Metrics Suite for Object
Oriented Design ”,in IEEE Transaction In Software Engineering, Vol
20,No 6,june 1994.

[9] Deepak Arora , Pooja Khanna and AlpikaTripathi,Shrpra Sharma and
SanchikaShukla,” Software quality estimation through object oriented

design metrics,” In International Journal Of Computer Science And
Network Security,Vol 11, No 4,April 2011.

[10] Guigui,Paul D. Scott , “Measuring software component reusability by
coupling and cohesion,” In journal of computers,vol.4,No 9,September
2009.

[11] Kavitha, Dr.A.Shanmugam, “Dynamic coupling of object oriented
software using trace events,”In IEEE Transaction,2008.

[12] Lawrie,D.,Feild,H., and Binkley,D.,"Leveraged Quality Assessment
using Information Retrieval Techniques", in ICPC'06, pp.149-158.,2006

[13] Mishra, B, ShuklaK. , “Impact of attribute selection ondefect proneness
prediction in OO software,”2nd International Conference on Computer
and Communication Technology (ICCCT), IEEE Conference
Publications, PP: 367-372, 2011.

[14] Subramanyam and Krishnan, “Empirical analysis of CK metrics for
OOD complexity:Implication for software defect,” IEEE transaction on
software engineering,2003.

[15] SukainahHusein and Alan Oxley “A coupling and cohesion metrics
suite for object oriented software”, international conference on computer
technology and development,IEEE conference publication,2009.

[16] Újházi B , Ferenc R, Poshyvanyk DGyimothy.T, ”New Conceptual
Coupling and Cohesion Metrics for Object-Oriented Systems,”10th
IEEE working Conference, Pp. 33 - 42 ,2010.

IJAICT Volume 3, Issue 3, March 2016
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.05.07 Published on 05 (3) 2016

