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Abstract— There are many classification algorithms were 
employed successfully for the detection of unknown malicious code. 
Most of these studies extracted features based on byte n-gram 
patterns in order to represent the inspected files. In this study were 
present the inspected files using OpCode n-gram patterns which are 
extracted from the files after disassembly. The OpCode n-gram 
patterns are used as features for the classification process. The 
classification process main goal is to detect unknown malware 
within a set of suspected files which will later be included in 
antivirus software as signatures. A rigorous evaluation was 
performed using a test collection comprising of more than 30,000 
files, in which various settings of OpCode n- gram patterns of 
various size representations and eight types of classifiers were 
evaluated. A typical problem of this domain is the imbalance 
problem in which the distribution of the classes in real life varies. 
We investigated the imbalance problem, referring to several real-
life scenarios in which malicious files are expected to be about 10% 
of the total inspected files. Lastly, we present a chronological 
evaluation in which the frequent need for updating the training set 
was evaluated. Evaluation results indicate that the evaluated 
methodology achieves a level of accuracy higher than 96% (with 
TPR above 0.95 and FPR approximately 0.1), which slightly 
improves the results in previous byte n-gram representation. 

Keywords— N-Grampattern, Opcode, Code Emulation, Pattern 
Based Scanning. 

I. INTRODUCTION

Modern computer and communication infrastructures are 
highly susceptible to various types of attacks. A common 
method of launching these attacks is by means of malicious 
software (malware) such as worms, viruses, and Trojan horses, 
which, when spread, can cause severe damage to private users, 
commercial companies and governments. The recent growth 
in high-speed Internet connections enable malware to 
propagate and infect hosts very quickly, therefore it is 
essential to detect and eliminate new (unknown) malware in a 
prompt manner [1]. 

Anti-virus vendors are facing huge quantities (thousands) of 
suspicious files every day [2]. These files are collected from 
various sources including dedicated honey pots, third party 
providers and files reported by customers either automatically 

or explicitly. The large amount of files makes efficient and 
effective inspection of files particularly challenging. Our main 
goal in this study is to be able to filter out unknown malicious 
files from the files arriving to an anti-virus vendor every day. 
For that, we investigate the approach of representing malicious 
files by OpCode expressions as features in the classification 
task.   

Several analysis techniques for detecting malware, which 
commonly distinguished between dynamic and static, have 
been proposed. In dynamic analysis (also known as behavioral 
analysis) the detection of malware consists of information that 
is collected from the operating system at runtime (i.e., during 
the execution of the program) such as system calls, network 
access and files and memory modifications. This approach has 
several disadvantages [3]. First, it is difficult to simulate the 
appropriate conditions in which the malicious functions of the 
program, such as the vulnerable application that the malware 
exploits, will be activated. Secondly, it is not clear what is the 
required period of time needed to observe the appearance of 
the malicious activity for each malware [4]. 

In static analysis, information about the program or its 
expected behavior consists of explicit and implicit 
observations in its binary/source code. The main advantage of 
static analysis is that it is able to detect a file without actually 
executing it and thereby providing rapid classification.  

Static analysis solutions are primarily implemented using the 
signature-based method which relies on the identification of 
unique strings in the binary code. While being very precise, 
signature-based methods are useless against unknown 
malicious code .Thus, generalization of the detection methods 
is crucial in order to be able to detect unknown malware 
before its execution. Recently, classification algorithms were 
employed to automate and extend the idea of heuristic-based 
methods. In these methods the binary code of a file is 
represented, for example, using byte sequence (i.e., byte n-
grams), and classifiers are used to learn patterns in the code in 
order to classify new (unknown) files as malicious or benign. 
Recent studies, which we survey in the next section, have 
shown that by using byte n-grams to represent the binary file 
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features, classifiers with very accurate classification results 
can be trained, yet there still remains room for improvement.  

Another aspect in the maintenance of such a framework is the 
importance of updating the training set with new known 
malicious files. This is intuitively important, because the 
purpose of malicious files changes over time and accordingly 
the patterns within the code. Moreover, these malicious files 
are written in varying frameworks which result in differing 
patterns. However, it is not clear to what extent it is essential 
to retrain the classifier with the new files. For this purpose we 
designed a chronological experiment, based on a dataset 
including files from the years 2000 to 2007, and trained each 
time on files until year k and tested on the following years [5]. 

II. EXISTING SYSTEM 

There are many different technologies available to detect 
viruses most of which rely on the internal structure (rather 
than the behavior) of the virus. Although the behavior of each 
of the permutations of a metamorphic virus is the same, the 
structure is different which means they can become difficult to 
detect depending on the amount of variation [6]. There are 
some detection methods which detect suspicious ability or 
behavior within a program, such as heuristic analysis; however 
these methods are rarely used as a sole means of virus 
protection as they are normally prone to false-positives. The 
following subsections will discuss various existing methods 

2.1 Code Emulation 
Code emulation was briefly mentioned when discussing 
encrypted and polymorphic viruses as a possible means of 
retrieving the unencrypted form of the virus body. Using code 
emulation can be an effective tool when detecting viruses, 
since it involves emulating software on a virtual machine 
rather than a real processor. Because the virus is in a 
controlled environment, the system emulating the virus will 
not run any risk of harmful side-effects of the virus [7].  

2.2 Pattern based scanning 
One of the most common approaches to detecting viruses is 
called string or signature scanning. At a high level, signature 
scanning involves a set of signatures, or a string of bytes 
which can contain wild cards, which are found in viruses but 
not found in non-malicious code. These signatures often 
contain non-contiguous code, using wild cards where 
differences lie. These wild cards allow the scanner to detect if 
virus code is padded with other junk code [8]. This kind of 
detection requires research on known viruses, and patterns 
within each virus need to be studied so that these signatures 
can be found [9]. 

Although signature scanning works well on most viruses, a 
metamorphic virus could potentially create enough variation 
within the application making it nearly impossible to create a 
reliable signature [10]. 

III. PROPOSED SYSTEM

The approach which is proposed in this paper will be focused 
on the detection of unknown malware based on its binary code 
content. The authors of were the first to introduce the idea of 
applying Machine Learning (ML) methods for the detection of 
different malwares based on their respective binary codes. 
Three different feature extraction (FE) approaches were 
employed: features extracted from the Portable Executable 
(PE) section, meaningful plain-text strings that are encoded in 
programs files, and byte sequence features [11].  

Detecting Unknown Malware using Byte N-Grams Patterns 
Over the past decade, several studies have focused on the 
detection of unknown malware based on its binary code 
content. The authors of [16] were the first to introduce the idea 
of applying Machine Learning (ML) methods for the detection 
of different malwares based on their respective binary codes. 
Three different feature extraction (FE) approaches were 
employed: 

Features extracted from the Portable Executable (PE) section, 
meaningful plain-text strings that are encoded in programs 
files, and byte sequence features [12]. 

Representing Executables using OpCodes [13] An OpCode 
(short for operational code) is the portion of a machine 
language instruction that specifies the operation to be 
performed. A complete machine language instruction contains 
an OpCode and, optionally, the specification of one or more 
operands. The operations of an OpCode may include 
arithmetic, data manipulation, logical operations, and program 
control. 

The OpCodes, being the building blocks of machine language, 
have been used for statically analyzing application behavior 
and detecting malware [14]. addressed the tracking of malware 
evolution based on OpCode sequences and permutations. Data 
mining methods (Logistic Regression, Artificial Neural 
Networks and Decision Trees) are used in to automatically 
identify critical instruction sequences that can distinguish 
between malicious and benign programs. The evaluation 
showed a high accuracy level of 98.4%. Bilar examines the 
difference of statistical OpCode frequency distribution in 
malicious and non-malicious code. A total of 67 malware 
executables were compared with the aggregate statistics of 20 
non-malicious samples. The results show that malicious soft- 
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ware OpCode distributions differ significantly from non-
malicious software and suggest that the method can be used to 
detect malicious code. The approach in presents a single case 
in our methodology; in this paper we test several OpCode n-
gram sizes while Bilar used only 1-gram. Based on our 
experiments, using OpCode sequences improves the detection 
performance significantly. Santos et al.  Used the OpCode n-
grams (of size n=1, 2) representation to ascribe malware 
instances to their families by measuring the similarity between 
files. This is, however, different from our goal in which we 
attempt to classify unknown suspicious files as malicious or 
benign in order to detect new malware [15]. 

Our approach also stems from the idea that there are families 
of malware such that two members of the same family share a 
common “engine.” Moreover, there are malware generation 
utilities which use a common engine to create new malware 
instances; this engine may even be used to polymorph the 
threat as it propagates. When searching for such common 
engines among known malware, one must be aware that 
malware designers will attempt to hide such engines using a 
broad range of techniques. For example, these common 
engines may be located in varying locations inside the 
executables, and thus may be mapped to different addresses in 
memory or even perturbed slightly. To overcome such 
practices, we suggest disregarding any parameters of the 
OpCodes. We believe that disregarding the parameters would 
provide a more general representation of the files, which is 
expected to be more effective for purposes of classification 
into benign and malicious files. 

3.1 First Method. Dataset Creation 
We created a dataset of malicious and benign executables for 
the Windows operating system, the system most commonly 
used and attacked today. This malicious and benign file 
collection was previously used in. We acquired 7,688 
malicious files from the VX Heaven website. To identify the 
files, we used the Kaspersky antivirus. Benign files, including 
executable and DLL (Dynamic Linked Library) files, were 
gathered from machines running the Windows XP operating 
system on our campus. 

The benign set contained 22,735 files. The Kaspersky anti-
virus program was used to verify that these files did not 
contain any malicious code. 

Some of the files in our collection were either compressed or 
packed. These files could not be disassembled by disassembler 
software and therefore, after converting the files into OpCode 
representation we ended up with 5,677 malicious and 20,416 
benign files (total of 26,093 files). 

Code obfuscation is a prominent technique used by hackers in 
order to avoid detection by security mechanisms (e.g., anti-
viruses and intrusion detection systems).These techniques are 
also applied on benign software for copyrights protection 
purposes. Packing and compressing files can be achieved by 
using off-the-shelf packers such as Armadillo, UPX and 
Themida. In such cases, static analysis methods might fail to 
correctly classify a packed malware. Several solutions to the 
challenge of packed code were suggested (e.g., Ether, 
McBoost, PolyUnpack ). These methods were proposed for 
automatic unpacking of packed files by applying either static 
or dynamic analysis. Evaluation performed in these studies 
showed that unpacking files before being classified increase 
the classification accuracy. Our proposed method can use such 
an approach in order to overcome packed files. In addition, we 
would like to point out that classifying benign files is also 
useful and can reduce the load of inspecting suspicious (or 
unknown) files. Also, the large number of malware files in our 
dataset that could be dissembled indicates that in order to 
appear benign and to pass security mechanisms (that are 
configured to block content that is encrypted\obfuscated and 
cannot be inspected), these techniques are not always used by 
hackers. 

3.2 Second Method. Data Preparation and Feature 
Selection 

To classify the files we had to convert them into a vectorial 
representation. We had two representations, the known one, 
often called byte n-grams, which consists of byte sequences of 
characters extracted from the binary code, and the second 
OpCode n-grams represented by sequences of OpCodes. 
Using disassembler software, we extracted a sequence of 
OpCodes from each file representing execution flow of 
machineextracted from the binary code, and the second 
OpCode n-grams represented by sequences of OpCodes. 
Using disassembler software, we extracted a sequence of 
OpCodes from each file representing execution flow of 
machine operations. Subsequently, several OpCode n-gram 
lengths were considered where each n-gram was composed of 
n sequential OpCodes. This process is presented in Figure 1. 

The process of streamlining an executable starts with 
disassembling it. The disassembly process consists of 
translating the machine code instructions stored in the 
executable to a more human-readable language, namely, 
Assembly language. The next and final step in streamlining 
the executable is achieved by extracting the sequence of 
OpCodes generated during the disassembly process. The 
extracting of sequences is in the same logical order in which 
the OpCodes appear in the executable, disregarding the extra 
information available (e.g., memory location, registers, 
etc.)The size of vocabularies (number of distinct n-grams) 
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extracted for the OpCode n-grams representation were of 515, 
39,011, 443,730, 1,769,641, 5,033,722 and 11,948,491, for 1-
gram, 2-gram, 3-gram, 4-gram, 5-gram and 6-gram, 
respectively. 

Fig 1 :  File processing flow diagram 

Later, the normalized term frequency (TF) and TF inverse 
document frequency (TFIDF) representations were calculated 
for each OpCode n-grams patterns in each file. The TF and 
TFIDF are well known measures in the text categorization 
field. In our domain, each n-gram is analogous to a word (or a 
term) in a text document. The normalized TF is calculated by 
dividing the frequency of the term in the document by the 
frequency of the most frequent term in a document. The 
TFIDF combines the frequency of a term in the document 
(TF) and its frequency in the whole document collection, 
denoted by document frequency (DF). The term’s 
(normalized) TF value is multiplied by the IDF = log (N/DF), 
where N is the number of documents in the entire file 
collection and DF is the number of files in which it appears. 
Input Design 

The first step in system design is to design the input and 
output within predefined guidelines. In input design, user 
originated inputs are converted into computer based format. In 
output design, the emphasis is on producing the hard copy of 
the information requested of displaying the output on CRT 
screen in a predefined format. 

Inaccurate input data are the most common causes of errors in 
data processing. Project message and appropriate sections can 
control errors committed by data entry operators. The 
following features have been incorporated into the input 
design of the proposed system. 

3.2.1 Easy data input 
Data entry screens have been designed in a manner much 
similar to old systems. Each form has controls for insertion, 

updating and exit. Appropriate messages are provided in the 
message area, which prompts the user in entering the right 
data. Erroneous data inputs are checked while user inputs.  

3.2.2 Use Friendliness 
User is never left in a state of confusion as to what is 
happening; instead appropriate error and acknowledgement 
messages are sent. Error capturing is used to indicate the error 
codes and specific error messages. 

3.2.3 Consistent Format 
A fixed format is adopted for, displaying the title and 
messages. Every screen has buttons, which displays the 
operation that can be performed after data entry. They are 
normally done at the touch of a key or mouse. 

3.2.4 Interactive dialogue 
The system engages the user in an interactive dialogue. The 
system is able to extract missing or omitted information from 
the user by directing the user through appropriate messages, 
which are displayed. 

Input design is the process of converting user oriented inputs 
to computer based format. It also includes determining the 
record media, method of input, speed of capture, and entry 
into the system. 
Consideration can be given to 

a) Type of input
b) Flexibility of format
c) Speed
d) Accuracy 
e) Verification methods
f) Ease of correction
g) Need for specialized documentation
h) Storage and handling requirements
i) Automatic features
j) Hard copy requirements Security 
k) Environments of data capture
l) Portability 
m) Compatibility with other system 
n) Cost etc.

Keyboard may be used as in input media. The data are 
displayed on cathode ray tube screen for verification. 
Inaccurate input data are the most common cause of errors in 
data processing. Errors entered by the user can be controlled 
by input design.  

3.2.5 Output Design 
During the output design phase the necessary outputs are 
planned and designed based on user the objective of the 
reports is to present the data in the way that the management 
can present the data quickly and clearly. Each and every page 
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is designed in such a way they can be taken printouts with 
required information. This information helps the user to 
provide a neat and clear presentation about the student 
information. 
Whether the output is formatted report or a simple listing of 
the contents of a file, a computer process will produce the 
output. 

 A Document
 A Message                    
 Retrieval from a data store
 Transmission from a process or system activity
 Directly from an output sources

The Output will be object detection with separate part 
detection. 

IV. CONCLUSION

In this work we define a new malicious code detection 
algorithm. That will reduce the unknown code in the 
developed program that will improve the quality of 
software, improves reusability and easy debugging. In 
this work the information are extracted into opcode n-
gram representation that will help to identify the 
unknown code. The output of this file helps to predict 
the fault in the object oriented systems. 
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